# Improving CO<sub>2</sub>-DCV with Airflow Measurement

David S. Dougan, President



## Demand Control Ventilation

What is required to satisfy the requirements of ASHRAE Standard 62.1-2016 with dynamic reset?

#### ASHRAE 62.1–2016 Ventilation Rate Procedure (VRP)

- **6.2.7 Dynamic Reset.** The system may be designed to reset the outdoor air intake flow  $(V_{ot})$  and/or space or ventilation zone airflow  $(V_{oz})$  as operating conditions change.
- **6.2.7.1 Demand Control Ventilation (DCV).** DCV shall be permitted as an optional means of dynamic reset.

**Exception:**  $CO_2$ -based DCV shall not be applied in zones with indoor sources of  $CO_2$  other than occupants or with  $CO_2$  removal mechanisms such as gaseous air cleaners.

- **6.2.7.1.1** For DCV zones in the occupied mode, breathing zone outdoor airflow  $(V_{bz})$  shall be reset in response to current population.
- **6.2.7.1.2** For DCV zones in the occupied mode, breathing zone outdoor airflow  $(V_{bz})$  shall be not less than the building component  $(R_a \times A_z)$  for the zone.

#### ASHRAE 62.1–2016 Ventilation Rate Procedure (VRP)

**6.2.2.1 Breathing Zone Outdoor Airflow.** The outdoor airflow required in the breathing zone of the occupiable space or spaces in a *ventilation zone*, i.e., the breathing zone outdoor airflow  $(V_{bz})$ , shall be no less than the value determined in accordance with Equation 6.2.2.1.

$$V_{bz} = R_n \cdot P_z + R_a \cdot A_z \tag{6.2.2.1}$$

where

 $R_n$  = outdoor airflow rate required per person from Table 6.2.2.1

 $P_z$  = the number of people in the ventilation zone during typical usage

 $R_q$  = outdoor airflow rate required per floor area from Table 6.2.2.1

 $A_7$  = zone floor area

#### ASHRAE 62.1–2016 Ventilation Rate Procedure (VRP)

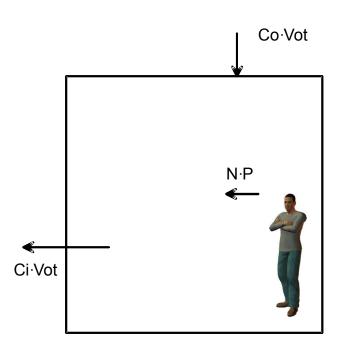
**6.2.2.1 Breathing Zone Outdoor Airflow.** The outdoor airflow required in the breathing zone of the occupiable space or spaces in a *ventilation zone*, i.e., the breathing zone outdoor airflow  $(V_{bz})$ , shall be no less than the value determined in accordance with Equation 6.2.2.1.

$$V_{bz} = R_p \cdot P_z + R_a \cdot A_z \tag{6.2.2.1}$$

where

 $R_p$  = outdoor airflow rate required per person from Table 6.2.2.1

 $P_z$  = the CURRENT population of the ventilation zone (as per 6.2.7.1.1)


 $R_q$  = outdoor airflow rate required per floor area from Table 6.2.2.1

 $A_7$  = zone floor area

# What about CO<sub>2</sub>-DCV

Does CO<sub>2</sub>-DCV satisfy the requirements of ASHRAE Standard 62.1-2016?

## CO<sub>2</sub> and Ventilation



Co = Outdoor  $CO_2$  concentration (ft<sup>3</sup>  $CO_2$ /ft<sup>3</sup> air)

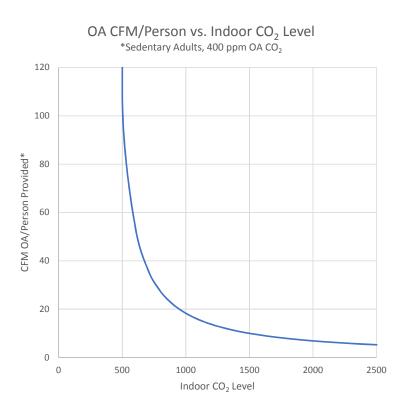
Ci = Indoor  $CO_2$  concentration (ft<sup>3</sup>  $CO_2$ /ft<sup>3</sup> air)

Vot = Outside Airflow Rate (ft³/min)

Vo=Outside Airflow Rate/Person ((ft³/min)/person

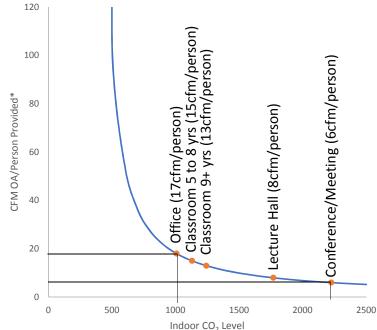
 $N = CO_2$  production of occupant (ft<sup>3</sup>  $CO_2$ /min)

P = Number of occupants


**Steady-state Mass Balance: In = Out** 

 $Co \cdot Vot + N \cdot P = Ci \cdot Vot$ 

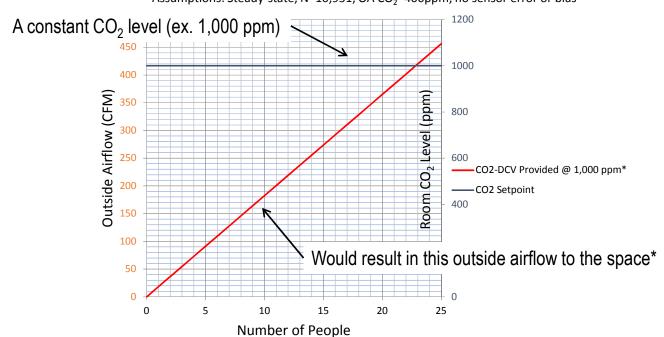
Can be rearranged as:


N / (Ci - Co) = Vot/P = Vo = OA CFM/person

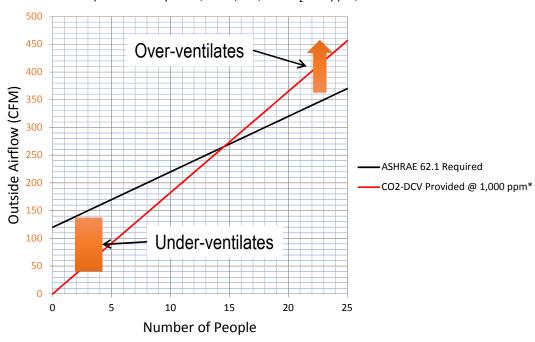
#### Relationship between the indoor CO<sub>2</sub> level and OA Ventilation



## CO<sub>2</sub> and Ventilation are Codependent







Operate: 18 CFM/person

Design: 6 CFM/person

**CO<sub>2</sub> DCV** (1,000 sq.ft. classroom)
\*Assumptions: Steady-state, N=10,951, OA CO<sub>2</sub>=400ppm, no sensor error or bias



CO<sub>2</sub> DCV (1,000 sq.ft. classroom)

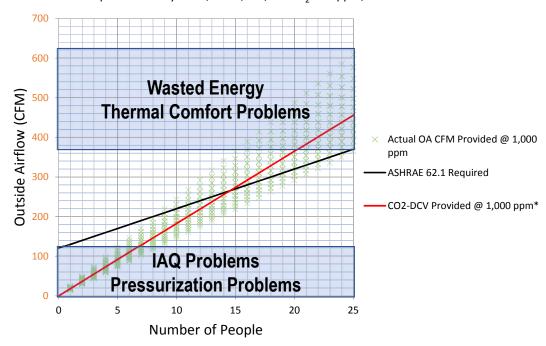


# CO<sub>2</sub>-DCV

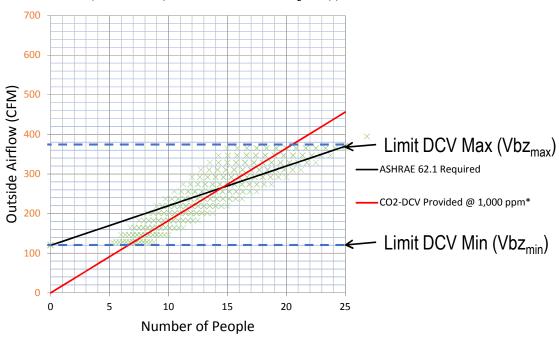
How does indoor/outdoor CO<sub>2</sub> uncertainty affect the ventilation provided by CO<sub>2</sub>-DCV?

**CO<sub>2</sub> DCV** (1,000 sq.ft. classroom)
\*Assumptions: Steady-state, N=10,951, OA CO<sub>2</sub>=400ppm, no sensor error or bias

Ventilation Uncertainty
Indoor CO<sub>2</sub>: ± 100 ppm
Outdoor CO<sub>2</sub>: ± 50 ppm

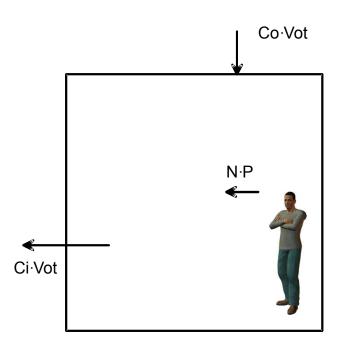

Actual OA CFM Provided @ 1,000
ppm
—ASHRAE 62.1 Required
—CO2-DCV Provided @ 1,000 ppm\*

# Improved CO<sub>2</sub>-DCV


Can I improve traditional CO<sub>2</sub>-DCV performance?

# **Address Fixed Damper Error**

CO<sub>2</sub> DCV (1,000 sq.ft. classroom)




CO<sub>2</sub> DCV (1,000 sq.ft. classroom)





### CO<sub>2</sub> and Ventilation



Co = Outdoor  $CO_2$  concentration (ft<sup>3</sup>  $CO_2$ /ft<sup>3</sup> air)

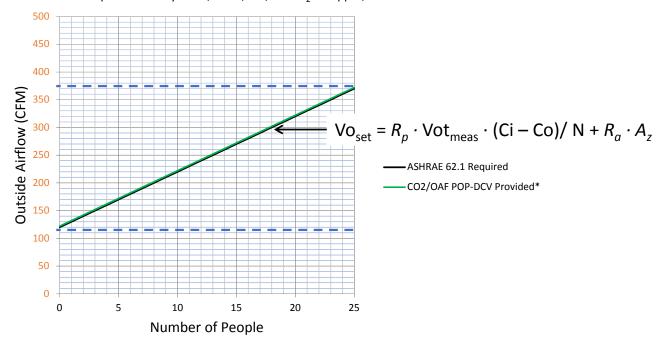
Ci = Indoor  $CO_2$  concentration (ft<sup>3</sup>  $CO_2$ /ft<sup>3</sup> air)

Vot = Outside Airflow Rate (ft³/min)

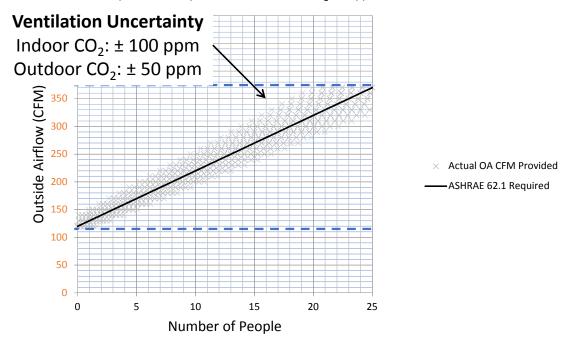
Vo=Outside Airflow Rate/Person ((ft³/min)/person

 $N = CO_2$  production of occupant (ft<sup>3</sup>  $CO_2$ /min)

P = Number of occupants


**Steady-state Mass Balance: In = Out** 

 $Co \cdot Vot + N \cdot P = Ci \cdot Vot$ 


Can be rearranged as:

Vot·(Ci-Co) / N = P = People!

CO<sub>2</sub> / Airflow DCV (1,000 sq.ft. classroom)



CO<sub>2</sub> / Airflow DCV (1,000 sq.ft. classroom)





# Thank You!

David S. Dougan, President

